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An average pro®le of squared normalized structure factors as a

function of resolution, h|E|2i(d*), calculated from a large ensemble of

high-resolution protein models, is presented. An interpretation is

given that provides a structural explanation for Sheldrick's 1.2 AÊ rule

for the applicability of direct methods. The implications for the

potential effectiveness of extended direct methods, incorporating

stereochemical knowledge, are discussed.
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1. Introduction

Terms such as low, medium and high resolution

have been used for a long time in crystallo-

graphy and have, despite their somewhat

imprecise de®nition, been useful in describing

the level of detail in electron-density maps.

One resolution limit that stands out among the

rest in terms of a precise operational de®nition

is that of atomic resolution. In 1990, Sheldrick

wrote

Experience with a large number of structures

has led us to formulate the empirical rule that if

fewer than half the number of theoretically

measurable re¯ections in the range 1.1 to 1.2 AÊ

are `observed' [i.e. have F > 4�(F)], it is very

unlikely that the structure can be solved by

direct methods . . . This rule simply re¯ects the

assumption of resolved atoms, which is often

invoked in direct methods.

(Sheldrick, 1990). The application of direct

methods to macromolecules (Miller et al., 1994;

Miller & Weeks, 1998; Sheldrick, 1998; UsoÂ n &

Sheldrick, 1999) has con®rmed the stringency

of this rule and it is now well established in the

crystallographic literature. In this communica-

tion, we present a structural interpretation for

Sheldrick's rule and show that it corresponds

to intrinsic properties of organic molecules,

especially those of proteins.

2. Wilson statistics, standard normalized
structure factors and direct methods

If atoms are distributed independently and

uniformly within the unit cell, the distribution

of F(h) can readily be shown to be Gaussian

(Wilson, 1949, 1950). Standard normalized

structure-factor amplitudes (Hauptman &

Karle, 1953), de®ned by

jE�h�j2 � jF�h�j
2

"h�2�h�
; �1�

where �2(h) =
P

f 2
j �h� and "h is the statistical

weight of h, have the property that h|E(h)|2i = 1.

Deviations correspond to a departure from

uniformity and/or independence, i.e. to struc-

tural features. |E| values play a prominent role

in the theory of direct methods in that the

reliability of triple-phase relationships depends

on the corresponding triple products of |E(h)|

values. Harker (1953), Hauptman (1965) and

Main (1976) have shown how structural

knowledge could be used to improve data

normalization, but the subsequent derivations

of phase relationships remained based on the

standard random-atom model. A more radical

approach was proposed by Bricogne (1994,

1995, 1997a,b), replacing the random-atom

model by a random-fragment model, in which

selected fragments are randomly placed

according to a given probability distribution of

positions and orientations. This type of

approach has been nicknamed the micro-

molecular-replacement method (�MR). Its

starting point is the multipole expansion for

the transform of an arbitrary molecular frag-

ment as

F�h� �P1
l�0

Pl

m�ÿl

blm�d�h�Ylm��h; 'h�; �2�

which was used by Lattman (1989) to compute

small-angle scattering curves for proteins.

Ylm(�h, 'h) denotes the spherical harmonics as

a function of the angular spherical coordinates

of the reciprocal-space vector h and the blm

values are the expansion coef®cients. In the

process of implementing the �MR approach

(Bricogne, 1993) it was noted that these curves,

normalized into |E|2 pro®les as a function of d*,

jEj2�d�� � 1

�2�d��
P1
l�0

Pl

m�ÿl

jblmj2�d��; �3�

exhibited a pronounced peak at a resolution of

around 1.1±1.2 AÊ , with |E|2 typically reaching a

value of 1.3 or higher for all organic molecules

examined. The universal occurrence of this

peak led to the conjecture that it was asso-

ciated with `Sheldrick's rule' (Sheldrick, 1990),
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although no obvious structural interpreta-

tion was at hand.

3. |E|2 profiles

Theoretical |E|2 pro®les have since been

computed according to (3) for 700 good-

quality (Rfactor < 0.2) high-resolution

(<2.0 AÊ ; Hooft et al., 1996) protein chains

from the Protein Data Bank (Bernstein

et al., 1977; Berman et al., 2000) as well

as for nucleic acid structures and a number

of small molecules. A detailed analysis

of their similarities and differences and

of secondary-structure in¯uence will be

discussed elsewhere (manuscript in

preparation). The data presented here were

obtained for structures without H atoms.

The inclusion of H atoms has a negligible

effect of the |E|2 values in the range of

interest presented here; however, the

departure from the equal-atom model

increases and the radial pair distribution as

de®ned above may no longer be regarded as

a purely geometric term (the equal-atom

structure approximation holds well for

organic molecules without considering H

atoms).

The correctness of the multipole expan-

sion equation has been con®rmed both in

analytical terms (Stuhrmann, 1970) and also

by direct comparison with computed |E|2

pro®les that we have obtained using Debye's

formula (Debye, 1915),

I�d�� �P
i

f 2
i �d��

�P
i

P
i 6�j

fi�d��fj�d��sinc�2�d�rij�; �4�

and again normalizing by �2. The sinc func-

tion is de®ned as sinc(x) = sin(x)/x.

3.1. Sheldrick's 1.2 AÊ rule for direct

methods

One of the most striking features of the

calculated |E|2 pro®les is the pronounced

maximum at approximately 1.1 AÊ (Fig. 1).

The emergence of this peak can be under-

stood by recalling that radial |E|2 pro®les

and the radial pair distribution function are

related by a sinc transformation ± a spheri-

cally averaged form of the Fourier relation-

ship between the intensity distribution and

the Patterson function,

jEj2�d�� � 1

�2

RR
0

P�r�sinc�2�d�r�r2 dr �5�

� 1� RR
0

p�r�sinc�2�d�r� dr; �6�

where R is the largest interatomic distance

and P(r) is the radial Patterson function.

p(r) is known as the radial pair distribution

function (the spherically averaged origin-

removed Patterson function) and for truly

equal atom structures gives the number of

atoms with a separation within (r, r + dr). A

substantial contribution to the peak around

d = 1.1 AÊ simply arises from the fact that the

sinc function shows a maximum in this

region for typical bonding distances of about

r = 1.5 AÊ , as can readily be seen

by plotting sinc(2�d*r) as a

function of d. However, this peak

in |E|2 is greatly enhanced owing

to the interference of intera-

tomic distances that give rise to

an approximately 1.1 AÊ repeti-

tive structure in the radial pair

distribution function. Table 1

lists some typical distances found

within proteins. It can be seen

that every protein contains

distance beats of approximately

1.1 AÊ . The relevance of this

observation to direct methods is

as follows. After a medium-

resolution peak at about 4.5 AÊ ,

|E|2 values are systematically

depressed below 1.0 from about 3.5 AÊ

onwards and only at about 1.25 AÊ does the

expectation value for |E|2 start to exceed

unity again, thus giving an increase in good

strong |E| values for direct methods. A

resolution of about 1.2 AÊ is suf®cient to

reproduce a radial distance distribution with

separated peaks of the above-mentioned

type and to therefore provide both the

atomicity and more importantly the stereo-

chemical regularities for the successful

application of direct methods.

4. Discussion

The 1.2 AÊ limit required for the successful

application of direct methods and the de®-

nition of atomic resolution have long

seemed plausible from a simple argument of

the observation-to-parameter ratio (Dauter

et al., 1997). In this article, we have

presented a structural basis for Sheldrick's

1.2 AÊ rule in terms of (i) typical bonding

distances that directly give rise to a

maximum of �1.2 AÊ through the sinc func-

tion in Debye's formula and (ii) the

interference between various sinc-function

contributions as a consequence of distance

beats that occur in the radial pair distribu-

tion function in proteins and typical organic

molecules. The incorporation of data above

1.2 AÊ is in effect simply introducing the

structural information that is missing in the

stereochemistry-free foundations of classical

direct methods. Below 1.0 AÊ the |E|2 values

¯uctuate closely around unity, indicating

that no further major structural information

is encoded in this region (see also the |E|

®ltering method of Gilmore & Brown, 1988).

The �MR approach was proposed to over-

come the above limitations by producing

stereochemically aware structure-factor

statistics and likelihood functions and

thereby signi®cantly relaxing the data-

resolution requirements. The underlying

theoretical foundations of this approach

have been published (Bricogne, 1995,

1997a,b) and implementation is under way.
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